Morse theory for $G$-manifolds
نویسندگان
چکیده
منابع مشابه
Discrete Morse Theory for Manifolds with Boundary
We introduce a version of discrete Morse theory specific for manifolds with boundary. The idea is to consider Morse functions for which all boundary cells are critical. We obtain “Relative Morse Inequalities” relating the homology of the manifold to the number of interior critical cells. We also derive a Ball Theorem, in analogy to Forman’s Sphere Theorem. The main corollaries of our work are: ...
متن کاملTwo-orbit Kähler Manifolds and Morse Theory
We deal with compact Kähler manifolds M acted on by a compact Lie group K of isometries, whose complexification K has exactly one open and one closed orbit in M . If the K-action is Hamiltonian, we obtain results on the cohomology and the K-equivariant cohomology of M .
متن کاملOptimal discrete Morse functions for 2-manifolds
Morse theory is a powerful tool in its applications to computational topology, computer graphics and geometric modeling. It was originally formulated for smooth manifolds. Recently, Robin Forman formulated a version of this theory for discrete structures such as cell complexes. It opens up several categories of interesting objects (particularly meshes) to applications of Morse theory. Once a Mo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bulletin of the American Mathematical Society
سال: 1965
ISSN: 0002-9904
DOI: 10.1090/s0002-9904-1965-11306-4